Errata for Integrated Physics and Calculus, Volume 2

Andrew Rex and Martin Jackson ©2000 Addison Wesley Longman

Updated January 18, 2005

Note: "Line -n" means the *n*th line from the bottom of the page.

p. 447, line -4	lines in the plane by linear equations in three variables \rightarrow lines in the plane by linear equations in two variables
p. 450, line 1	line \rightarrow plane
p. 450, line -4	in two places: $-D/A \rightarrow -D/C$
p. 456, line 9-10	a infinite number of values for $\arcsin 0.5 \longrightarrow$ infinitely many values of $\arcsin 0.5$
p. 461, line -8	desribes \rightarrow describes
p. 463, line 4	The text following the first display should read: Fix the parameters a , b , and c while considering d as varying from 1 to -1 . Think of the corresponding surfaces in animation with d serving as the time (running backward from $d = 1$ to $d = -1$). At $d = 1$, we see a one-sheet hyperboloid. As d decreases, the neck of the one-sheet hyperboloid contracts in toward the origin. For $d = 0$, the neck pinches down to the origin itself and the surface is an elliptic cone. As d continues to decrease (and is now negative), the surface splits into a two-sheet hyperboloid.
p. 468, line -8	$\lim_{u \to K} \cos(u) = K \to \lim_{u \to K} \cos(u) = \cos(K)$
p. 487, first display	Should read:
	$\tilde{f}(x,y) = \begin{cases} f(x,y) & \text{ if } (x,y) \text{ is in } R \\ 0 & \text{ if } (x,y) \text{ is in } \tilde{R} \text{ but not in } R. \end{cases}$
p. 498, line −12	The third coordinate is z is the same \rightarrow The third coordinate is the same
p. 502, line 6	by integrating the function \rightarrow by integrating the function
p. 526, Table 15.1 and inside back cover	mass of Mercury should read 3.30×10^{23}
p. 527, line −1	$N{\cdot}m^2/s^2 ightarrow N{\cdot}m^2/kg^2$
p. 529, line 3 and line14	$N{\cdot}m^2/s^2 \rightarrow N{\cdot}m^2/kg^2$
p. 529, line 14	$2.70 \times 10^3 \text{ m/s}^2 \rightarrow 2.70 \times 10^{-3} \text{ m/s}^2$
p. 558, lines -6 to -4	$F_{32} \rightarrow F_{23}$
p. 564, Figure 16.9	$-L \rightarrow -L/2$, $L \rightarrow L/2$
p. 572, lines -1	a input point \rightarrow an input point
p. 574, lines 11	As example \rightarrow As an example
p. 583, first display	in denominator: $x - a \rightarrow x + a$
p. 601, Problem 27, line 1	$y = 2.50 \text{ m} \rightarrow z = 2.50 \text{ m}$

p. 601, Problem 29, line 1	between the two parallel disks \rightarrow between two parallel disks
p. 602, Problem 10, line 1	charge $0.25 \ \mu C \rightarrow charge - 0.25 \ \mu C$
p. 605, line -9	$\partial/\partial x \rightarrow \partial/\partial y$
p. 606, last display	$\left. \frac{\partial f}{\partial y} \right _{1,\pi} \rightarrow \left. \frac{\partial f}{\partial y} \right _{(1,\pi)}$
p. 635, last display	$\frac{\partial V}{dx} \rightarrow \frac{\partial V}{\partial x}, \frac{\partial V}{dy} \rightarrow \frac{\partial V}{\partial y}, \frac{\partial V}{dz} \rightarrow \frac{\partial V}{\partial z}$
p. 643, first display	$f_{xxx}(x,y) = \frac{\partial^3 f}{\partial x^3} \frac{\partial}{\partial x} \left[\frac{\partial^2 f}{\partial x^2} \right] \to f_{xxx}(x,y) = \frac{\partial^3 f}{\partial x^3} = \frac{\partial}{\partial x} \left[\frac{\partial^2 f}{\partial x^2} \right]$
p. 649, Problems 17,18	f(x,y) o f(x,y,z)
p. 699, last display	$y-2 \rightarrow y-1$ and $x+1 \rightarrow x+2$
p. 703, line 13	$(2+\pi)r+h \rightarrow (2+\pi)r+2h$
p. 720, line -8	be \rightarrow by
p. 742, second display	in two places: $\sin \theta_i \rightarrow \cos \theta_i$
p. 752, Problem 8 of Section 22.1	radius $4 \rightarrow \text{radius } 2\sqrt{2}$
p. 762, line 4	field lines \rightarrow field vectors
p. 764, line 6	$am \rightarrow an$
p. 764, line 17	of that Example 23.3 \rightarrow of Example 23.3
p. 784, Problem 26	r > R o r < R
p. 794, line 10	experience \rightarrow experiences
p. 800, line 11	carries \rightarrow carrier
p. 814, Problem 6	form \rightarrow from
p. 822, Figure 25.4 caption	Example 24.1 \rightarrow Example 25.1
p. 847, Line 1	continuous partial derivatives \rightarrow continuous second partial derivatives
p. 847, Line 11	Theorem 25.2 \rightarrow Theorem 22.3
p. 856, Line –7	defined in Problem 7 \rightarrow defined in Problem 12
p. 900, Line -9	definition \rightarrow definition
p. 902, Line -12	for all (x, y) in $\mathbb{R} \longrightarrow$ for all (x, y) in \mathbb{R}^2
p. 905, Line 6	through \rightarrow through
p. 912, Table 27.1 caption	theoreoms \rightarrow theorems
p. 916, line −1	examine this extra term \rightarrow examine how this extra term
p. 920, Figure 27.10 caption	in Equation (27.39). \rightarrow in Equation (27.39) with $\phi = 0$.

p. 920, line 18	$mL + M\left(-\frac{EL}{Mc^2}\right) \rightarrow mL + M\left(-\frac{EL}{Mc^2}\right) = 0$
p. 922, line 5	$\frac{(C/s)m}{s} \rightarrow \frac{(C/s)m}{C}$
p. 923, Figure 27.11	Figure should include an arrow from the label "visible light" to the narrow band between UV and infrared
p. 927, line 18	insert equal sign between $rac{2(5.0 imes 10^{-3} ext{ J/s})(3600 ext{ s})}{3.00 imes 10^8 ext{ m/s}}$ and $1.2 imes 10^{-7} ext{ J/m}$
p. AN-3, Volume 2, Section 18.1, Problem 13	$f_z(x,y,z) = 2x(14y^2 + z)^2 \to f_z(x,y,z) = 2x(14y^2 + z)^{-2}$
p. AN-3, Volume 2, Section 18.2, Problem 7	$z = e^2 + e^2(x-2) + e^2(y-1) \rightarrow z = e^2 + e^2(x-2) + 2e^2(y-1)$
p. AN-3, Volume 2, Section 18.2, Problem 21	$\left(-\frac{1}{3},-\frac{1}{6}\right) \rightarrow \left(-\frac{1}{3},\frac{1}{6}\right)$
p. AN-3, Volume 2, Section 18.2, Problem 23	(a) 0.94 m (b) 0.13 m (c) -0.94 m \rightarrow (a) 1.48 m (b) 0.212 m (c) -1.48 m
p. AN-3, Volume 2, Section 18.5, Problem 3	$\frac{2x}{(x^2+y^2)^2}\hat{i} + \frac{2y}{(x^2+y^2)^2}\hat{j} \to \frac{4x}{(x^2+y^2)^2}\hat{i} + \frac{4y}{(x^2+y^2)^2}\hat{j}$
p. AN-3, Volume 2, Section 18.5, Problem 5	$-3\sin(2x)\cos(y)\hat{j} \rightarrow +3\sin(2x)\sin(y)\hat{j}$
p. AN-3, Volume 2, Section 18.6, Problem 1	$-\frac{2kq}{\sqrt{2}a^2} \rightarrow -\frac{kq}{\sqrt{2}a^2}$
p. AN-5, Volume 2, Section 21.2, Problem 13	$30\Omega \rightarrow 40\Omega$
p. AN-5, Volume 2, Section 22.2, Problem 5	$8 \rightarrow -8$
p. AN-5, Volume 2, Section 22.3, Problem 5	$\frac{1}{2}x^2 + \frac{1}{2}y^2 + \sin x \to xy + \sin x$
p. AN-5, Volume 2, Section 23.2, Problem 15	$\sqrt{2}v \rightarrow \sqrt{2} v $